

Overview

- Motivation: Aerosols, Clouds, Climate
- Cloud Droplet Formation and Growth
- CCN Measurement & Characterization
 - CCN Closure
 - Organic Properties
 - Surface Tension Effects
 - Mixing State
 - Droplet Growth Kinetics
- 2008 ARCPAC Field Campaign
- Vertical Profiles of Haze

Motivation: Aerosol Indirect Effects

Clean Environment (fewer aerosols)

Polluted Environment (more aerosols)

1st Indirect Effect: Polluted clouds will have smaller and more numerous droplets, which makes the cloud denser and able to reflect more incoming radiation

2nd Indirect Effect: Smaller droplets increase cloud lifetime by suppressing precipitation

Motivation: Aerosol Indirect Effects

Radiative Forcing Components

- Can compare present-day energy balance to preindustrial (1750 AD).
- Impacts of greenhouse gases are well understood
- Impacts of aerosols are poorly understood

Credit: A. Nenes

Credit: A. Nenes

Measuring CCN Activation and Growth with the DMT Continuous-Flow Streamwise Thermal-Gradient CCN Counter

- Expose aerosol to a fixed water vapor supersaturation for a fixed amount of time
- Measure CCN Concentration and Final Droplet Size.

CCN Closure: Comparing Observations with Predictions from Köhler Theory

Measured composition from AMS & <u>Assumptions</u>: Mixing State, Surface Tension, Organic Properties

+

Measured size distribution from

UHSAS, CPCs

=

Predicted CCN Concentration

Does the predicted concentration match what we measure?

Sample Size Distribution from TexAQS

CCN Closure: Comparing Observations with Predictions from Köhler Theory

Characterizing Droplet Growth Kinetics

- As a first step, evaluate droplet growth with respect to ammonium sulfate calibration aerosol
- The next step will be to model the aerosol residence time and apply the droplet growth equation to infer the water uptake coefficient

38 -

36

34 -

32 -

30 -

26 -

ِ 1200 – 38

36

34

32

- 30 - 28

26

Characterizing Droplet Growth Kinetics

Summary of ARCPAC Data

- FL to CO Transit (3/29) **POWER FAILURE BETWEEN 17:46 AND 18:38 UTC**
- CO Flight (4/1) LEAK
- CO to AK Transit (4/3) **INSTRUMENT IN DRYING MODE**
- AK Flight #1 (4/11) **POWER FAILURE AFTER 20:46 UTC**
- AK Flight #2 (4/12)
- AK Flight #3 (4/15)
- AK Flight #4 (4/18)
- AK Flight #5 (4/19)
- AK Flight #6 (4/21)
- AK to CO Transit (4/23)

from NASA DC-8 (4/12)

4/15/2008: 2nd Cone top profile: 00:23-00:40 Ascent, 00:40-00:59 Descent

Preliminary CCN Data Omitted Until Finalized

Contact the PI for Assistance

A. Nenes (nenes@eas.gatech.edu)

4/19/2008: Stepped profile Over Barrow: 23:30-00:30 Descent

Preliminary CCN Data Omitted Until Finalized

Contact the PI for Assistance

A. Nenes (nenes@eas.gatech.edu)

4/21/2008: Descending Profile Near Coast: 23:57-00:08

Preliminary CCN Data Omitted Until Finalized
Contact the PI for Assistance

A. Nenes (nenes@eas.gatech.edu)

Scientific Questions

- Compare CCN Closure & Growth Kinetics:
 - Haze Layer vs. Background
- Do organics contribute to soluble mass?
 (Models currently neglect organic contribution to CCN.)
- Do organics depress surface tension and/or lower growth kinetics?
- How can we link inferred CCN properties to observed cloud properties?

Acknowledgements

- Thanos Nenes and the GA Tech Aerosol-Cloud Research Group
- Greg Huey, Dave Tanner, and Mark Lord for Integration Assistance
- NOAA Folks: Chuck Brock, Tom Ryerson, Jeff Peischl, Sara Lance, Julie Cozic, Roya Bahreini, Ann Middlebrook, Joost deGouw, Carsten Warneke, Ken Aiken
- GCEP: Jeff Gaffney, Nancy Marley, and Milton Constantin

Funding: RHM: DOE GCEP GREF, GA Tech

President's Fellowship; AN: NOAA Grant, NSF CAREER

Questions?

